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Learning Models and Real-time Speech Recognition

Douglas G. Danforth, David R. Rogosa,
and Patrick Suppes

1. INTRODUCTION AND THEORY

In October of 1972, the decision was made at the Institute for

Mathematical Studies in the Social Sciences (IMSSS) to use psychological

learning models on the problem of computer recognition of Ilut,an epees';.

In this investigation of speech recognition we used the standard home

telephone as an inexpensive terminal for verbal communication in dealing

with an educational curriculum, such as mathematics. In subsequent

pages we describe mathematical learning models and some of their pro-

perties, their implementation as part of a speech recognition system,

and a series of, system experiments with children as subjects.

Speech recognition can be viewed as three separate processes: (a)

the internal representation of each utterance, (b) the actual recogni-

tion process, and (c) the change of the internal -representation upon the

discovery of errors by the recognition process (learning) 3n our

approach, the representation of each utterance is given by a vector of

numbers U. These numbers are the digitized amplitudes and frequencies

from three band-pass filters that take as input the analcg signal from,

say, a telephone (see Section 2). In this study we deal on1.y with re-

cognition of individual phrases, and consequently, each utterance may be

normalized in time to a fixed length, 0,50 secs. Our recognition process

utilizes what can be called the nearest neighboc approach. A metric
0

(see below) is introduced into the space and q distance is calculated

from the unknown utterance U to each of the members Of a set of vectors

*This research was supported by National Science Foundation (rant
EC 443X4.



(V) representing known phrases; the name of the V closest to U is

assigned to U.

1.1 Theta Process

Upon the discovery that U was misclassified, Cie correct vector V

is updated using the following learning model. Let 0 < 6 < 1 be an

arbitrary scalar parameter and let V be the old vector representing the

word from which U is a sample. Then a new V representation can be con-

structed from a weighted average of U and the old V, namely,

V 4 (1-0 )*V -'.- 0*U. (1)

Note that as 8 ranges from zero to one the new representation ranges

from V cc U, This model, called the theta prccess and patterned after

psychological models developed by Bush and Mosteller (1955) and Estes

and Suppes (1959), is one aspect of our learning approach to speech re-

cognition, Let us now investigate some of the properties of this linear

learning model. In what sense does V 'represent' a word? If U is con-

sidered a random sample from a population with mean vector M = EU, where

E stands for expectation, then

EV <- (1-0 )*EV e*Eu, (2)

If we initialize the representation V to the first-heard utterance from

the population, then by a simple inductive argument we find that EV = M

too, so that V is an unbiased estimate of the mean of the population to

which U belongs. It is well known that the sampie mean is also an un-

biased estimate of the population mean, However, V has the property of

giving greater weight to recent utterances than to earlier ones. This

2



responsiveness of V is useful in providing a more accurate representa-

tion of the speaker's current pattern of speaking,

It is of interest to consider the di9tance of a sample U of the

population to its representation vector V so as to determine the

likelihood of correct classification, Let d(U,V) be this distance and

Ed(U,V) its expected value. If we assume a Euclidean metric and inde-

pendent, identically distribuced (i.i.&) random samples U, it can

easily be sown that this distance on the nth trial is given by

2n-1

1 + (1- 9)
Ed(U,V) = 2 ---------- * Ed(U,M), n=1,2,.

1 + (1- 0)

(3)

where Ed(U,M) is unknown but independent of 6 and trial number. Thus

we have an expression for the expected distance between a member of the

population and its representation vector V, Figure 1 shows explicitly

the functional form of Ed(U,V)/Ed(U,M) for the cases where n=10 and

n=50

Insert F,igu.!.e 1 about here

Equation 3 gives the expected distance as a function n ano 6

The minimum of Equation 3 may be ::btained by setting its derivative

equal cc zero. By fixing c and solving for 6 in this expression, th-e.

valuez presented in Table 1 were obtained., Note that n set zo Ler sig-

nifies V = U initially, This table is considered later in the experi-

Insert Table 1 about hare

mental sections with regard to the error rave :f classification,

3
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Fig. 1. The above plot displays the axitencf- of vt.ry pronoun,:fd

minima at 0=0.166 for n=10 and at 0:4).051 for n=50. Minima

ihri5e occur for each trial number n. when 8 asNume5 Dia- of the,y,

minimizing value," it is reasonable to believe. that the probability of

an utterance being correctly classified as V is maximized.

4

0.7



TABLE 1

Values of Theta Which Minimize the Expected Distance

as a Function of n

n 6

1 I 1.000

2 1 0.472

3 0.387

5 0.252

10 1 0.166 (see experiment 2A)

15 E 0.126

20 I 0.103

25 1 0.08%

30 1 0.075

35 1 0,068

40 1 0.061

45 I 0.056

50 0.05 (see experiment 1)
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1.2 Delta Process

The theta process is essentially an estimate of the first moment of

the population. In the standard problem of statistical classification

(Anderson, 1958), estimates of the covariance matrix are necessary to

determine a hyperplane separating two populations. In order to avoid

the inversion of a full covariance matrix, which is necessary with the

classical Baysian procedure, one may use other less precise but, compu-

tationally more efficient techniques. One of these, which we call the

delta process, estimates the variances of the utterance componencs. Let

6 (delta) be a parameter that lies in the interval 0,1 , then S
2

given

by the learning equation

S
2

4- (1- 6)*S
2

+ e)*(U - V)
2

(4)

is an estimate of the component variances, where U,V are as before.

Using the two quantities V and S , we may calculate a 'distance'

between the utterance U and a representation vector V by

D(U,V) = (U-V)TW (U-V), (T=Transpose)

where

and

W = A ,

TrA

A = diag(S
2
)

-1
, diag(S2)

(Tr=Trace)

S
1

2

2
0

S
2

(5)

0 S
n

2

which differs from the Euclidean distance d(U,V) by the replacement of

I (the identity matrix) by W. Notice that components with high varia-

bility are weighted less than those with low variability.

6



1.3 Beca PrDc.ess

Alternatively. we may introduce --.he concept of sttength asso-

ciated with each component of V and then increase or decrease its value

depe-dIng upon whether that component correctly or incorrectly classi-

fies an utterance. Let L ba a vector-of strengths associated with V.

ThenLicanbechangedbymultiplyingbyaquantity-P.1 (Beta) such

that

L, <- $ AL
1 1

(8)

Thus, $i > 1 if i is a gcci component and =1 if it is bad, (Eq 10).

The weights subsequently associated with the components of V are related

ha s:rengths through notmaiization, namely

where

W --, A

TrA

(6')

(diag L). (Y?

Again :he distan:e be:ween an littErane snd a reesentation vec:or V Is

gien by

D;UJ/: (U-'%;)

A good CD1,-pnear. 1.5' when C.A zissFifi.7.stn ass occur :ed

Ler V be the incce.:tly chorien ep-ta'ientat:ion a,id V the nue

veto : with which U should be identified Then component i is gccd it

(U-V)
...

,W
11

(U-V", W' (15-01 10)

and bad otherwi.se. Changing the strenghs by Elua:ion 8 is beta



process, which has been studied extensively in Lamperti and Suppes

(1960), We call the combined processes (theta,delta) the delta model

and those of (theta,beta) the beta model.

1.4 Internal vs External Learning Models

Our use of the delta and beta models is at variance with what is

usually done in the psychological investigation of human learning. A

task is presented to subjects and a mean learning curve is obtained by

measuring the average number of correct responses as a function of the

presentations of the task (trial number), A theoretical model 1.s then

proposed as a possible explanation for this correct response curve, and

the parameters of the model are estimated from the data We may con-

sider such models 'external' models. In contrast, we specify explicitly

the internal response processes, Consequently, the delta and beta

models, as used here, may be considered 'internal' mode13. The theoret-

ical link between the internal-external responses of the machine is

suggested in Sections 3.4 and 4.3 chrcugh the comarison of the minimum

expected distance of an utterance :o its representation vector and the

measured error rate of experiments 1 End 2. Further theoretical inves-

tigation of this link is underway, Section 4.2 and 4,3 discuss the

application of an external model to the learning curves of experiment

2A,

2. IMPLEMENTATION

An overview of our speech recognition system is presented pictori-

ally in Figure 2, A call placed from a standard home telephone to an

a



Institute number is automatically coupled with an Institute high-speed

line that feeds the analog signal to our hardware filters. These fil-

Insert Figure 2 about here

ters are patterned after those used in Vicens (1969,1970) and consist of

three slid -state band-pass filters whose ranges were chosen to approx-

imate,the human formant structure--150-900 Hz, 900-2100 Hz, 2100-5000

Hz, respectively. Since the telephone frequency response is in the

range 300-3000 Hz, our filters adequately span this interval, The

output from each of these detectors then is amplitude and frequency

sampled at 10 cosec intervals and the digitized results are shipped by

high-speed line to our PDP-10. This is all done in real time.

The raw, digitized utterance data flows into an internal buffer

until the hardware stops transmitting, which occurs whenever the input

analog signal falls below a hardware specified threshold for longer than

a hardware specified time. The buffer is dumped when the flow of input

data ceases. The dumped data are then reformatted and time and ampli-

tude normalized for return to the recognition programs in a convenient

standardized form. The form is a vector of 300 numbers, (3 amp + 3

freq)*(100 samples/sec)*(1/2 sec).

The recognition process simply entails calculating the distance

from utterance vector U to each representation vector V of the vocabu-

lary, that is, calculating the weighted sum of squares of component

differences. The word with the minimum distance is deemed the best

choice. The recognition ratesis such that some 30 words per CPU second

9



Speech System Overview

Home IMSSS Speech Software Speech
telephone--->automatic--->havdware--->PDP10--->normalization--->recognition

telephone filters program programs
coupler

Curriculum

V
High-speed line Audio Audio
connection to < D/A < output
telephone converter programs

Structure of Recognition Programs

Incoming normalized utterance vector

Distance calculator
(to all members of the vocabulary)

Nearest neighbor choice

Validation

Learning algorithm
(theta with delta or beta)

Fig. 2. Ovc:view of speech recognition system.
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can be compared. In experiment 2B, where a 14 word vocabulary is used,

actual recognition times in a time-sharing environment and optimal rec-

ognition times are comparable (about 1/2 sec).

Changes of the internal representation of the word spoken are

accomplished by the learning algorithms based on the theory previously

described. Specifically, this entails modifying each component of the

,
representation vector V and its associated strength vector (S2 or L).

The programming requirements of the two models are quite minimal.

The programs are written in SAIL (Stanford Artificial Intelligence

Language), which is a superset of ALGOL. The full curriculum of exper-

iment 2B occupies, when running, only about 35K of core memory including

the child's state vector (see Secs. 4 and 5), the recognition algo-

rithms, and the audio output routines.

The production of spoken output is presently accomplished by re-

trieving digitized representations of the words stored on magnetic disk

and by software regeneration of the analog signal. Again this audio

process is executed in real time. Consequently, the interchange between

student and computer is sufficiently fluent for smooth verbal communica-

tion with the educational curriculum.

3. EXPERIMENT 1

3.1 Description

As a first quick test of the models, two highly confused utter-

ances, the letters B and D, were chosen. Fifty utterances of each

letter were spoken into a high quality crystal microphone and recorded

11



on disk in their digital form, after having passed through our hardware

filters. These utterances were then cycled 10 times, in their original

order, through the delta and beta models.

3.2 Delta model

The parameters e and 6 for the delta model ranged in the inter-

val 0.1,1.0 and 0.1,0.4 , respe-_tively. Larger intervals were not

used as the basic structure of the delta model was revealed in this

range. Table 2 gives the results of the percentage of ccrrect classi-

fications (PCC) for the grid space. Note that under these somewhat

Insert Table 2 about here

artifical conditions the delta model performed well with a regular

structure and a recognition rate of 96 percent at 0=0,1 and 6=0,1.

3.3 Beta Model

Table 3 shows results of the beta model using the same data. Note,

at least in the preliminary test, a somewhat poorer performance (81

percent at e-0.1 and 5 =1.1) with less regularity of structure than the

delta model.

3.4 Theta Process

Insert Table 3 about here

A different, but similat, set of data (50 utterances each of B and

D) was used to examine the theta process by itself. Again the data were

12



Theta
.40 1

TABLE 2

Percentage of Correct Classification,

Delta Model

61 58 53 + + + + + + +

70 65 65 59 56 58 + 55 53 57

80 75 68 66 67 63 52 56 + 57

96 95 83 78 75 71 61 45 37 57

.10 .20 .30 .40 .50 .60 .70 .80 .90 1,00

+ not processed.
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TABLE 3

Percentage of Correct Classifications,

Beta Model

Beta
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Theta
1.00 66 71 70 70 69 65 62 58 64 61

.90 1 59 62 58 57 55 + 54 54 54 53 53

.80 58 63 61 59 60 + 63 57 53 57 67

.70 64 66 63 75 57 59 74 56 61 54 71

.60 69 69 71 56 58 55 56 68 53 58 60

.50 64 73 65 58 58 62 58 59 59 53 66

.40 73 72 72 62 64 60 66 54 58 70 75

.30 70 74 66 69 78 68 64 78 53 53 76

.20 1 73 76 62 64 70 62 63 79 66 77 77

.10 176 81 78 63 62 58 79 81 79 79 79

+ not processed.

14



cycled 10 times using the beta model with p set to one (i.e., no

change of strengths), and allowing 9 to vary from 0 to .1 in steps of

.01 and from 1 to 1 !_n stops of . 1 , The form of the curve in Figure

Iasert Figure 3 about here

3 and the cccurrence of the minimum at .045 for , after 50 distinct

trials, correspoAd closely to :1-1,? predietion of Figure 1 for the minimum

distance to the representation vector; however, the similarity of error

rate and expected distance is blurred by the fact that the 50 distinct

utterances were presented ten times to the learning model. It ftan-be

after-50 distinct trials, correspond closely to the prediction of Figure

1 for the minimum distance to the representation vector; however, the

similarity of error rate and expected distance is blurred-by the fact

that the 50 distinct utterances were presented ten times to the learning

model. It can he considered, however, taat each cycle is a sequence of

50 disC.n.c. utterances differing only in the starting configuration.

This prelimirary experiment shoos r....'cmisa for the leerniag-model

approach to speech yeco&nitina ;ce1ta model 96 p.:-1cent) and indicates

that the theca process is ammeble to rel&tively simple an,33,sis (error

rate and expected distance similEr!':y'.

4. EXPERTMENI 2, PART A

4.1 Description

In an 4.7f-pr.7 :c plpvid0 a pricl: rest of the mdels under

actual operating conditicas of el?ph.....ce transmission and reception, we



0.1 0.2 0.3 0.4 0.5
Theta

Fig. 3. Error rate curve for the theta process.
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designed and executed an experiment of two parts (A and 13). In A we

acquired a data base of 14 children's voices spoken over the local Palo

Alto telephone system. The telephone arrangement, described in Section

2, entailed calling a local Palo Alto number connected to the Institute

from a university extension, The children, 3 girls and 11 boys, ranged

in age from 6 to 13 years. A 14-word vocabulary (consisting of. the

digits 0-9 and command words yes, no repeat, and stop) was chosen for

compatibility with an elementary mathematics curriculum. Dial -A- -Drill

(Computer Curriculum Corp., 1971). In the experiments the vocabulary was

presented sequentially on a cathode-ray tube terminal and was repeated

by tha child into the telephone for a of 11 repetitions of each

word. The time and amplitude normalized form of each utterance was re-

co..cded on magnetic disk.

For the analysis the data were eequential:.y presented to the beta

and delta lex=ing models in a machine :..wesen'.-.3;.!c71 of actual speakirg

condlcjcw::, mid ,3rac2 uls ,n du' fF.1,2-.

L. 2 Learning Curves of Core0: Cla6sifica:!,on

We .c-i represent the results of this expe',.iment by learnIng curves

for both the delta and beta models To form each learning outve we

combined each of the 14 subjects and their 14 responses per trial to

form a learning curve with ten points, with each point representing 196

subject-items on that particular ctral. Since we have 11 repetitions of

the vocabulary for each child, each learning curve has ten data points.

17



As an illustration that actual machine learning is taking place, we

examine these curves in the context of mathematical learning theory. In

order to avoid imposing a specific 'external model' on the learning pro-

cess, we examine the mean learning curve, since the same mean learning

curve can be generated from a wide variety of models. When we define

the asymptotic response probability P(correct)= rr (as n goes to

infinity)) 'guessing' parameter p
0,

and a learning parameter O<X<1 we

obtain the mean learning curve

P(correcc on trial n) = rr ( n-po)Xn-1

In Figure 4, we see that the learning curve for the delta model

attains a value of about 95 percent correct responses. The deviations

Insert Figure 4 about here

of recognition rates from the average across children are indicated by

the + one standard deviation error bars for each trial number. The

shape of the learning curve indicates that at least five repetitions of

the vocabulary are necessary fc.:- a high recognition rate. As shown in

Figure 5, the learning curve for the beta model reaches 91 percent

correct responses, which is lower than the delta model.

Insert Figure 5 about here

4.3 Regression on the Learning Curves

Since we are considering the general mean learning curve indepen-

dent of a specific learning model, we will not estimate the parameters
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Fig. 4. Learning curve for the delta model. The solid curve is

obtained from the best fit of the regression analysis on the theoretical

learning curve.
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of the curve in the conventional manner, using maximum likelihood esti-

mators or other statistical techniques based on predictions of the par-

ticular learning modal (Atkinson et.al.,1965). Instead we approach the

problem of parameter estimation as a regression problem, with the mean

learning curve of the form Y = b
1 4.

b
2
Z where b

1

= n , b,=p
0
- 7 and

,n-1
Z=X . Regression analysis for many values cf X were performed on the

learning curve data and the best fits, as determined by the R
2

and

standard error of estimate statistics, were used to estimate the para-

mete7:s,( n,p0) of the mean learning curve.

For tne delta model the maximum R2 statistic was ,916 with an

associated F value of 326 testing the statistical signifance of the

regression coeficients, and a etandard error of estimation (s.e.e.) of

.024. For X=.61 the parameter estimates I/ and p0 were .923 and ,477

respectively. Also, for X=,771, R
2
,...937 and s.e.e=.039 with F value

119. Here the parameter estimates were rr.9994 and p0=.53, Thus,

the regression analysis of the delta model learning curve yields an

asymptotic recognit ion rate above 92 percent with a 100 percent asymp-

totic recegnitien rate also giving a good fie tc the learning curve.

Fo-: the beta model learning curve, simf.lar analysis gave the

greatest R2=.969 with s.e.e,=.02 and F=247. Here X=.72, r....914 and

p0=.572. the largest n was .94 with p0=.592, X=.S0, R2=.80, s-e.e.=

.025, and F=159. Again asymptotic recognition rates above 90 percent

were found with the best fit at 91.4 percent and the maximum asymptotic

rate of 94 percent with significant F values,
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4.4 Parameter Grid Spaces

For simplicity in computation and discussion, we us the average of

the nini:h and tenth trials as the asymptotic approximation, although one

cannot be certain that asymptote has been reached by the tenth trial.

In our discussion we consider two different asymptotoic maxima, the group

asymptotic maximum displayed in the learning curves and parameter grid

spaces and the individual asymptotic maxima shown in the later figures.

The group asymptotic maxima are obtained by averaging over the subject's

individual asymptotic recognition rates for each grid point and select-

ing the maximum, while the individual maxima are simply the best asymp-

totic recognition rates for each child in his parameter space. The grid

paints for individual maxima may or may not coincide with the points for

the group maximum. We use the group asymptotic value as our recognition

rate, although the mean of the individual maxima is greater, in recog-

nition of the importance of a single parameter setting generalizable

across children.

To further illustrate the structure of the delta model, consider

Table 4, which shows the percentage of asymptotic correct classifica-

tions averaged over the 14 subjects as a function of the parameters 0

and 6. The parameter space displays a definite and regular structure

Insert Table 4 about here

for the delta model. The group maximum is 94.1 percent at grid point

8 =.41 6=-1.

Similarly, we display in Table 5 the structure of the asymptotic

percentage of correct classification over a grid of parameter settings
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Theta
0.0

1.00 78

.90 79

.80
1
80

.70 82

.60 83

.50 183

.40 85

.30 86

.20 j 87

.10 84

00 i 59

Table

Asymptotic Percentage of Correct Classifications,

Delta Model

Delta
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

78 78 78 /8 78 78 78 78 78 68

82 86 87 87 88 82 68 50 40 37

88 89 89 89 85 77 62 47 41 36

89 91 91 89 84 71 55 44 39 36

91 92 91 88 82 69 53 43 35 36

93 92 90 89 81 66 63 41 34 41

94 92 91 88 79 65 49 39 37 36

94 92 90 87 79 62 45 40 38 38

92 92 90 85 74 56 44 42 39 40

91 90 89 81 69 52 43 41 37 40

87 86 83 71 61 48 44 40 37 49
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for the beta model. The parameter space for the beta model is notice-

Insert Table 5 about here

ably flat even out to values of p=5.0. The group maximum is 89.8

percent at grid point (0.3,2,2),

4.5 Theta Process

Again we consider the theca process alone, Figure 6 gives the

error rate from column one cf. Table 4 (6=0). We note that to the

accuracy of the curve the minimum occurs at the same value of theta that

Table 1 predicts for the minimum of the expected distance of an utter-

ance vector to its representation vector on the tenth trial, This stri-

Insert Figure 6 about here

king corre3pondence between the minima of the error rate and the minima

Of the expected distance lends strength to analysis in terms of. dis-

tances, Note that this analysis holds for two dissimilar situations,

experiment 1 with a 2-word vocabulary and experiment 2 with a 14-word

vocabulary.

4.6 Individual Asymptotic Maxima

So far we have been considering the group asymptotic maximum using

one grid point for all subjects. This is important from an operational

point of view, since when dealing with many children in a CAI curriculum

it would be useful to have a general parameter setting good for all

students, In Figures 7 and 8 and Tables 6, 7, and 8 we examine distri-

butions of individual maxima ever the parameter space in a further com-
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Table 5

Asymptotic Percentage of Correct Classifications,

Beta Model

Beta
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Theta
1.00 78 78 78 79 79 79 79 79 79 80 78 78 78

.90 80 79 80 80 80 80 81 81 82 82 81 81 80

.80 80 81 81 82 81 81 82 82 82 82 82 82 83

.70 82 82 82 83 83 82 83 83 84 83 84 83 83

.60 83 83 84 83 83 85 84 84 84 83 84 84 84

.50 84 84 84 85 86 85 86 86 86 87 87 87 87

.40 85 86 86 86 87 88 87 88 88 88 89 88 88

.30 86 87 87 87 88 87 88 88 89 89 89 89 90

.20 87 88 88 89 88 88 88 88 88 88 88 88 88

.10 84 84 84 85 86 86 87 87 87 87 87 87 87

.00 58 62 63 64 67 67 68 68 68 70 69 69 71
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Fig..6. Error-rate curve for the theta process alone. Note the

agreement of the minimum with the prediction of Table 1 for the minimum

of the expected distance of an utterance vector to its representation
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parison of the beta and delta models. We see in Figure 7 a 3 percent

Insert Figure 7 about hers

overall improvement for the beta model with individual improvements of

as much as 13 percent for one subject when individual maxima are used

instead of the group maximum, For the delta model the improvement was

only 1.6 percent with the largest individual improvement being 3.6 per-

cent, As can be seen from Tables 4 and 5 the delta model displays more

regularity of structure about its group maximum than the beta model

does,

4.7 Comparison of Individual Maxima for Beta and Delta Models

Note in Figure 8 the delta model does as well or better than the

beta model in every case but one in this comparison. If wa compared the

Insert. Figure 8 about here

individual asymptotes at the group maximum the delta superiority would

be even greater. Hence, from these data from 14 children, we conclude

that the delta model produces better recognition than the beta model.

4,8 Distribution cf Opzimal Parameter Settings

The distribution of optimal setngs in the parameter space for the

two models is displayed in Tables 6 and 7. For the delta model the

asymptotic PCC for the grid point 9=.4, 8=,1 is consistently close to

the individual maximum value for all subjects. Nine subjects attained

Insert Table 6 about here
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X
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PCC -> mean=95.7

Beta Model

5 Y

4 Y
3 X X

2 X X Y X
1 X X X X Y X
0 . . . . . . .

70 75 80 85 90 95 100

PCC -> mean=92.6

X=male subject
Y=female subject

Fig. 7. Distribution of individual maximum asymptotic

percentage of correct classification for the Delta and Beta models.
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Fig. 8. Comparison of individual maximum percentage correct for

the Beta and Delta models.
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TABLE 6

Distribution of Optimal Parameter Settings,

Delta Model

Delta
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Theta
1.00

.90 1

.80

.70 1

.60 1

.50 2

.40 9

.30

.20 1

.10

.00

30

1.0



individual asymptotic maxima at this grid point, the group asymptotic

maximum. For the five subjects who had different individual asymptotic

maxima, the difference between their maximum recognition rate and their

recognition rate for the grid point 0=.4, 6=.1 is only 3.6 percent for

each subject. The beta model (Table 7) again shows more range and less

definite structure than the delta model with 8 of 14 subjects having

individual maxima distinct from the group maximum.

Insert Table 7 about here

4.9 Age Dependancy of Recognition Rate

From the results in Table 8 we can determine almost no age depen-

dence for the recognition rates of children in the age range of 6 to 13

years old.

Insert Table 8 about here

5. EXPERIMENT 2, PART B

5.1 Description

The follow-up experiment was designed to determine whether or not

the results of 2A had valid correspondence to actual working conditions

of real-time recognition in a child's learning situation. It entailed

investigating recognition rates for a telephone CAL mathematics curricu-

lum with audio output based on Dial-A-Drill (Computer Curriculum Corp.,

1971), which incorporates the delta model into the learning scheme. The

system presently runs in a fully automatic mode in that a telephone call
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Theta
1.00

TABLE 7

Distribution of Optimal Parameters Settings,

Beta Model

Beta
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

.90

.80

.70

.60

.50

.40 1 1

.30 1

.20 1 1 1 1

.10 1 1

.00
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TABLE 8

Distribution of Individual Maximum Asymptotic PCC

as a Function of Age

Delta Model

Age of Subjects
6 7 8 9 10 11 12 13

PCC
1001 XX

8

6 Y XY X
4

2
X X

90

8

6

4

2 X
80

Beta Model

Age of Subjects
6 7 8 9 10 11 12 13

PCC
100 X X X
8

6 Y Y XY X
4

2
X X 4

90

8

6

4

2

80

8

6

4
X

2

70
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placed to (415) 321-TALK is automatically answered by a coupler that

connects the outside phone line to an Institute high-speed data line

(HSLIO). The TENEX executive program of the PDP-10 has been modified so

that upon sensing the input data over HSL10 it vIll log in a job and run

a prespecified program.

The mathematics curriculum is extremely simple. It uses only the

14-word vocabulary described in the previous experiment, and randomly

generates five types of questions (sum, difference, product, integer

division, and ratios), The computer-student dialogue consisting of

these arithmetic questions, produces audio output that is accessed

quickly from magnetic disk and transmitted to the student over the

telephone,

5.2 Dial-A-Drill Curriculum Structure

The ctl.:riculum structure is indicated in Figure 9. A typical seg-

Insert Figure 9 about here

men of the dialogue could consist of the following:

COMPUTER: WHAT IS 1 MINUS 3 ?

STUDENT: 4

COMPUTER: YUP, THAT'S RIGHT.

COMPUTER: 6 OVER 3 IS WHAT ?
STUDENT: 2

COMPUTER: DID YOU SAY 0 ?
STUDENT: no
COMPUTER: SORRY, MY MISTAKE. PLEASE SAY 2.
STUDENT: 2

COMPUTER: THANK YOU!

COMPUTER: 5 TIMES 0 IS WHAT
STUDENT: 5

COMPUTER: DID YOU SAY 5 7

STUDENT: yes
COMPUnR: TOO BAD, 5 TIMES 0 IS O.
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Question

R / \\-R

"Yup,that's right" +n
(learning) /

1 Y / \N

"nope"

SYMBOLS

+y "That's
/ right"

Y/ N (incorrect
learning)

"Too,bad"
3

"mymistake"
"please say *"
(learning)

2

+n

Y/

"mymistake"
"please say *"

(learning) "nope"
"mymistake"

"please say *"
(learning)

A Correct answer given by child
-A Incorrect answer given by child
R Recognized by computer

-R Misrecognized by computer
Node

+n Node with "no" response elways
+y Node with "yes" response always
Y Computer thinks yes was said
N Computer thinks no was said

Correct answer (to be repeated by student)

Fig. 9. Tree diagram for learning in the mathematics curriculum.
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Each of the above three dialogues can be represented as a path along the

learning tree shown above. We use noncontingent learning for the delta

model on all correct responses and also update the representation vector

on all requested repetitions. The one possible incorrect learning node

on the tree was not realized in practice.

Seven subjects from Part A each answered 100 mathematics exercises

from the curriculum. The recognition mechanism was loaded with a state

vector for each subject obtained from the data of Experiment 2A using

the delta model at the optimal parameter settings.

5.3 Comparison of Parts A and B

The resulting recognition rates for the telephone curriculum are

shown in Figure 10 and average 13 percent below the best recognition

rates for the subjects in Experiment A. The decrease in.recognition

rates in Part B can be accounted for by educational and psychological

factors. We did not have an introductory session to acquaint the child

Insert Figure 10 about here

with the system. Also, in an effort to approximate natural home condi-

tions we gave no instructions to the child about speaking carefully.

When faced with a mathematical question instead of a mere request to

repeat a number the student sometimes stammered or changed his mind in

the midst of an utterance (e.g., "ONZ--NO-TWO!"), which had obvious de-

grading effects on the recognition rate. Observe that even under these

conditions the recognition rates are all above 75 percent.
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Fig. 10. Comparison of,recognition rates on experiments 2A

and 2B for the seven subjects completing both experiments.
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5 4 Confusion Matrix for Experiment 2B

In Table 9 we present a confusion matrix of the numbers 0-9 for the

seven subjects in experiment 23. Each element of the confusion matrix

(cii) represents the number of events where the utterance was i and the

Insert Table 9 about here

classification was j. Thus the matrix entry c2,0 indicates the number

of events where 2 was said and the computer misclassified the utterance

as O.

6. SUMNARY AND CONCLUSIONS

We have constructed and tested two models of learning processes for

the purpose of computer recognition of human speech over the telephone.

The delta model was found superior to the beta model in all comparisons.

For the delta model a regression analysis on the learning curve yielded

a 92.3 percent recognition rate for 14 subjects ranging in age from 6 to

13 years old. When the individual approximate asymptotic maxima are used

the recognition rate climbs to 95.7 percent. All the recognition was

done using a standard home telephone.

It should again be emphasized that we are conducting real-time re-

cognition in a time-sharing environment without any linguistic restric-

tions and with relative computational simplicity. Consequently, the

system can be used on any language from Swahili to English.

We also tested the recognition system on an elementary mathematics

curriculum conducted entirely over the telephone in Experiment 2B. From

our observations we found that the children seemed quite tolerant of

38



TABLE 9

Confusion Matrix for Experiment 2B

0 1 2 3 4 5 6 7 8 9

0: 159 2 8 0 1 0 2 0 0 0

1: 3 79 2 0 8 2 0 1 0 5

2: 12 0 64 1 0 0 2 1 0 0

3: 2 1 1 45 0 0 1 1 3 0

4: 3 2 1 0 54 0 1 0 0 0

5: 0 7 1 0 1 35 0 1 0 8

6: 2 0 3 0 0 0 42 0 4 0

7: 2 1 2 0 0 0 1 38 0 0

8: 4 0 1 3 0 0 3 0 40 0

9: 0 0 0 2 0 0 0 2 0 27
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nonperfect recognition and, indeed, were amused when the computer made

a mistake.

In our efforts we are approaching speech recognition from the ci-

rection of machine learning. In analyzing experiment 2A we see that

learning indeed occurs and is amenable to theoretical analysis for the

purpose of predicting the learning performance from the structure of the

model. Future efforts will be directed toward deriving the exact form

of this performance and toward making deeper comparisons with human

learning theory.
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APPENDIX

Previous Speech-Recognition Work at IMSSS

Camille Bellissant
,Stanford University

1. INTRODUCTION

The aim of this work was to run some preliminary experiments using

audio for both input and output in a computer-assisted instruction (CAI)

program.

The output part, i.e., speech production, was handled by an exis-

ting program that gives good results for short sentences. The produc-

tion is not done by synthesizing but by digitizing spoken words which

are later concatenated to produpe a sentence. The random access to the

digitized records on the disk allows quick retrieval and, when the com-

puter is not overloaded, permits a continuous audio output.

For the input part, i.e., speech recognition, it was decided to

begin by adopting the system developed by Raj Reddy and Pierre Vicens at

the Artificial Intelligence Project, Stanford University (Vicens, 1970).

This choice was justified by the effectiveness of the system for recog-

nizing isolated words belonging to a small vocabulary (about 50 words,

which is large enough size for our purpose).

In the next section we describe the Vicen's program and our modifi-

cations of it.
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2. THE MODIFIED VICEN'S PROGRAM

In his thesis, Vicens (Vicens, 1969) presents the techniques and

methodology he used in building the system.

2.1 Preproces:Ang.

The audio message to be recognized is first preprocessed by hard-

ware, Three filters (150-900 Hz, 900-2200 Hz, 2200-5000 Hz), correspon-

ding roughly to the first there fon.ants of voice, and an analog to

digital converter produce for each frequency band and for each sample of

10 ms of sound the maximum amplitude (peak to peak) and the number of

zero-crossings of the amplitude-time function. The data are transmitted

through a high-speed line to the software preprocessor, which normalizes

the amplitudes.

2.2 Segmentation.

After the hardware and software preprocessing, the data are treated

by the segmentation procedure. This consists of grouping the minimal

segments of 10 ms into wider segments presenting roughly the same acou-

stic characteristics (sustained segments) and isolating the others into

transitional segments.

Although some errors can occur in this grouping, and a secondary

segmentation procedure corrects the possible errors by looking at the

variation of parameters in the sustained segments and at the local max-

ima and minima of the amplitude parameters in the transitional segments.

If the variation of parameters in a sustained segment exceeds a certain

limit, or if a transitional segment presents a local extremum, the seg-
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ment is divided into smaller ones.

The last part of the segmentation is the combining process whose

purpose is to group together acoustically similar secondary segments.

The sustained segments are extended onto the transitional segments if

The parameters are too different.

2.3 Classification.

After the segmentation process, most of the transitional segments,

which do not contain pertinent information, are eliminated. The purpose

of classification is to assign linguistic labels to the sustained seg-

ments. The phoneme groups are fricative, vowel, stop, consonant, nasal,

and burst. The vowels are subclassified into nine categories with re-

spect to their zero-crossing parameters. The discrimination into pho-

neme groups is accomplished by comparing the amplitude and zero-crossing

parameters of the segments with known values in acoustic phonetics.

The results of the previous processes are summarized in an internal

representation of the speech utterance that is used for all the storing,

retrieving and matching processes.

2.4 Recognition.

The recognition of words is accomplished by retrieval of previously

learned messages. This learning consists of reducing the internal rep-

resentation of the speech utterance and storing the reduced form in a

dictionary. The size of such a reduced record is about 1000 bits of

continous storage for an average sound of 1 second. .

The dictionary is provided with two indepeneInt list structures

depending on the phonetic representation fo the message (number of
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vowels and unvoiced fricatives), and the print name of the message,

During the recognition phase, the dictionary organization allows a quick

candidate list to be constructed in the following stages:

1. Elimination of all candidates whose relative positions of

vowels and fricatives ar4different from those of the incoming message.

2. Elimination of all the candidates with strictly different vowel

zero-crossing characteristics.

3. Elimination of all the candidates having low-vowel similarity

scores obtained by comparison with the incoming message.

The first elimination is obtained directly from the dictionary,

which holds the relative position of vowels and fricatives for each re-

corded utterance. The second elimination is a:complished by using a

table that defines crude dissimilarity values between each pair of

vowels on the basis of their earlier classification into subcategories.

At this stage the list of candidates is reordered, so that the most si-

milar candidates are placed first.

The third elimination is done by computing a similarity between the

incoming message and all the entries in the candidate list. First, a

segment synchronization procedure is called to create linkages between

the segments of the two representations. The similarity values obtained

for each pair of linked segments are stored for the selection process

that chooses the candidate with the higher similarity coefficient. If

one of the candidates reaches a score greater than or equal to 95 per-

cent,the selection process immediately stops and returns the candidate

print name. Otherwise, each time a good similarity score is obtained

(>80 percent) the candidate list is rearranged in order to place first
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all entries having the same print name as that of the present candidate.

When the list is exhausted, the candidate with the best score is chosen

if the similarity score is at least greater than 75 percent. If none of

the candidates presents such a score, the selection process is reini-

tiated with a new list of candidates having small differences in the

phonetic representation (number and relative position of vowels and un-

voiced fricatives). If no candidate can be found in the dictionary, it

means that the incoming message cannot be recognized, and the user is

invited to enter its print name. At this time, the dictionary is aug-

mented by the representation of the new message, which can be used

afterwards as a possible candidate for a further utterance,

2.5 Modifications.

The original Vicens' program as described above was written in

FORTRAN for the PDP-10 at the Stanford Artificial Intelligence (AI)

Project. The program was rewritten for the PDP-10 at the Institute in

SAIL, which is a high-level language that is a superset of ALGOL and

that has been developed at the AI project.

Second, hardware that has performance characteristics very similar

to the hardware on the AI PDP-10 was designed and constructed by Ron

Wizelman of the Institute staff. There is a slight difference in the

handling of the incoming data as given by the hardware. The Vicens'

program was working within a "spacewar" environment in order to impose

priority over other users while listening to the sound- We use a high-

speed line that gives good results at all times for a continuous input.

In order to allow the user not to speak as soon as the program is ready
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to listen to him, we have implemented two thresholds. One is hardware,

the other is software. The first system is a simple potentiometer that

inhibits the hardware equipment as long as the amplitudes are under a

certain value. This value is adjustable and can eventually become zero.

As soon as this threshold value is exceeded, the hardware begins to

Transmit data to the program and keeps transmitting even after the am-

plitudes again drop under the threshold value. This delay, which is

also adjustable, is necessary to allow small silences in the utterance

without interrupting the transmission. Our first experiments with this

hardware threshold have shown some loss of data in the very beginning of

each utterance, due to the positive value-fixed threshold.

In order to avoid this loss ofIdata, we experimented with kicking

the microphone that started the hardware and speaking just after the

kick. The effect of the kick has been eliminated by software and so no

data were lost. Besides the inelegance of such a method, we found it

difficult to apply to all kinds of microphones, especially telephones.

So we introduced the following process. The hardware threshold is set

to zero, so the hatdware is always ready to transmit data. The software

procedure reads only three samples of sound (0.03 sec) and computes the

averaging amplitudes and zero-crossings. If these values are under a

threshold, three new samples are processed, and so on. If the values

are above the threshold, the procedure fills up the input buffer (1.5

sec). The 'tail' of the utterance, i.e., samples with low amplitudes at

the end of the message, is then eliminated so that only the relevant

values are subsequently processed by the segmentation procedure. When

the computer is overloaded, this method (the 'software kick') sometimes
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produces a loss of one sample (10 ms), which is actually the smallest

amount of data that can be lest.

The other differences we introduced in the Vicens' program concern

the selection process. First, the value of the similarity threshold (95

in the original prograM) which is used when one examines the candidate

list, was changed by an interactive command. We are concerned with the

best choice of the threshold value for different sets of words. Intui-

tively, the larger the value, the more demanding the system when it

tries to accept a candidate as a proper answer. Sets of the words with

large phonetic dissimilarity can be processed with a low threshold and

a consequent saving of time.

The second difference is related to the use of the system in peda-

gogical experiments in elementary arithmetic. The purpose of these ex-

periments is to ask the user the results of operations on numbers. In

this case, for each question there exists one and only one possible

answer. When the answer is incorrect, we do not try to recognize the

specific value that was uttered. For example, after the question "how

much is three plus four?" we are only interested in the comparison be-

tween the uttered answer and 7. If it is not 7 we do not try to know

whether it was 6, 8, or something else. In this situation, the recog-

nition process can be considerably accelerated by limiting the candidate

list to those that have the same print name as the expected answer. We

found that in this way the answer processing is faster than the time

spent to utter it, which offers some hope for communication by telephone

when the nature of the messages to be recognized is well adapted to such

a discrimination.

47



yEFFRENCES

Anderson, T. W. An introduction to multivariate statistical analysis.

New York: Wiley, 1958.

Atkinson, R. C., Bower, G., & Crothers, E. An introduction to

mathematical learning theory. New York: Wiley, 1965.

Bush. R. R., & Mosteller, F. Stochastic models for learning.

New York: Wiley, 1955.

Computer Curriculum Corp. Dial-A-Drill. Mt. View, Calif.: Computer

Curriculum, Corp., 1971.

Estes, W. K., & Suppes, P. (Eds.) Studies in mathematical learning

theory. Stanford, Calif.: Stanford University Press, 1959.

Lamperti, J., & Suppes, P. Some asymptotic properties of Luce's Beta

learning model. Psychometrika, 1960, 25, 233-241.

Vicens, P. Preprocessing for speech analysis. Project Memo No. AI-71.

Stanford Calif.: Artificial Intelligence Laboratory, Stanford

University, 1970.

Vicens, P. Aspects of Speech Recognition by Computer. Unpublished

doctoral dissertation, Stanford University, 1969.

48



oot fr Pi

165 L. 3. If -,but. A farinal ona.cl cur the cra-J,Ity 19, 1971. (A statistical method for
investigating the Perceptual M..theniaticat Psychology, 1972, 9, 389-403.)

166 J. F. Juola, I. S. Fischter, C, f Nt)r4, arl, R. C. a,rkins..,,. P.c.:our:Ilan tone tar inficardat ion stored in long-term memory. (Perception and
Psychsphnsiss, 1911, 10,

167 R. L Klatzky aid R. C. All Y',1tiow.; ,,,r onn in short -term doemory, (perception
and 1971, I

168 J . 0. Fletcher and R . C . evitnarlia; of ate St intnid CAI or ;gram lit reacit,y (1)T3,,tC5 K through 3). March 12, 1911.
(Evaluation of the Stanford CAI prdgrain lncitIonal Psycliiiilogy, 1972, 63, 597-602.1

169 J. F. Juola and R. C. Atkinson. Memory scanning rat...sq.:6;es. (Journal sl Vcrtal Learning and Verbal Behavior, 1971,
10, 522-527.)

170 I, S. Fischtcr and J. F.J.,ic,1,. [Peet; of repeated tests oii retaiiniti.cin tieit fcr intniiesd all ir, long-term inonicry. (Journal of Experimental
Psychology, 1971, 91,

171 P. Suppes, 5e,r.antics of coot& fragiiiiiiits of rtatnral tang:Ai/es. Miuch 30, 1971. (In K. J. J. M. E. kluravcsik, and
P. SuppeslEr".s.), ....AL:nroacties to naterai 1973. Pp. 221-242.)

172 J. Friend. INSTRUCT ciders' mangal kiti, 3., 1 :,71.
173 R. C. Atkinson and R. M. Shiffrin, the criintrol processes i stinit-tera miry. . April 19,1971. (The control of short-term memory.,

Scientific American, 1971, 224, 82-90.)
174 P, Suppes, Computer - assisted gistruct,cm art St'intord. i`j 19, 1971. On Mac aid cofr4.uter, Proceedings of international conference,

Bordeaux, 1970. Basel: Karger, 1972. Pp. 1'93-330.3
175 D. Jamison, J. D. Fletcher, P. Suppes, ard R. C. AtlAnstn. C, sr rtrlormalice of computer-assisted instruction for education of disadvantaged

children. July, 1971.
176 J. Offir. Some mathematical models cif inlicirlual diticrirces learning and ocricymance. June 28, 1971. (Stochastic learning models with

distribution of parameters. Journal of Mathematical Pcgict ology,-197 2, 9)41,
177 R. C. Atkinson and J. F. Juola. influcncarg speed and accuracy recognition. August 12, 1971. (In S. Kornblurn (Edit,

Attention and perfOrnalce IV. Kea, York. Academic Press, 1973.)
178 P. Suppes, A. Goldberg, G. Katz, B. Searle, and C. St.1.ffer, 1,11C ri.ir's handbook for CAI courses. September 1, 1971.
179 A. Goldberg. A generalized instructional system for elementary mathematical logic. Oct.;:dir 11, 1971.
180 M. Jerman, Instruction in problem solv,ng and as artaly is of structural variables that ccoitrbute to pri.blem-solving difficulty. November 12,

1971. (Individualized instruction in pra)ini solving in e-c.1,r.);:e natics. Journal for Research in Mathematics Education, 1973,
4, 6-19.)

181 P. Suppes. On the grammar and model-Ulm-sec:tic serdritics of chadrens elrrascs. November 29, 1971.
182 G. Kreisel. Five notes on the application of proof theory to ic-rim,lor ;inn:nice. December 10, 1911,
183 J. M. Moloney. An invest,gaticr cl cA stnilent serfnr.nance iin a logic esirricticm, in a computer- assisted instruction setting. January 28,

1972.
184 3, E. Friend, J.. O. Ficichier, aii3 R. C. of :. :instruct on IN programming. May 10, 1972,
185 R. L. t...rnith, Jr. TIe sync. arse' semantics of ERICi.. Jane 14 1312.
186 A. Goldberg and P. Suppes. A co,poter-a-.=. krst.ract'u on finding axioms. Jrinc 23, 1972. (Educational Studies

in Mathematics , 1972, 4, 429-449.1
187 R. C. Atkinson. Inigreelents for a theory sf 26, 1912. ;A r f::-.)m.holoyli,t,1972, 27, 921,931,1
188 J. D. Bonvillian and V. R. Charto.9. Psycl,l,ng.Hst,t ,;.,1 cation; cf dcafgesa A rei.i.:gv. Jqly 14, 1972.
189 P. Arable and S. A. Boorman. ktellidioncri..,..iial tt,m) itC.:19.ircis ct t1,%t.i, 1,t1r,, r :,,Artitlolis July 26, 1912. (Journal o' Mathematical

Psychology, 1973, 10,
190 J. Ball and D. Jamison. Computer-assisted instroc I isii 'sr -rased S ,.cm1 CO st models. September 15, 1972. (Instruct' anal

Science, 1973, 1, 469-501.)
191 W. 9, Sanders and .3. R. Ball'. Ingle igt. is in r Marhemar.cal Storhe-; m Inc Social Sciences, October 4, 1972,
192 M. I. Kane. Variability in line pronl C 1.1 ronrse I as 4 function of 'problem characteristics. October 6,

1972.
143 P. Suppes. Facts- and fantls,..s. , 1 17%. ':- a.r. C. Ctitispnig educe con: A4E1'1..311,1,5 from education,,!

research. Englewood J.. Pr: , 1)i3 pp, 6-45,
194 R. C. Atkinson and J. F. J'ui i. ,r 0..1,:041,.2:Vit-CPI'AP. 27, 1972,
195 P. Suppes, R, Smith, apri ..,,iiigy grit s--naniirr, er PIOUPPL , 110,em phrascs. Ncurembte 3, 1972.
196 0. Jamison, P. Suppes, and S. Arils. T's e rtili,cri4enciss .1"tiniis , ;Clods-. A sgrvey. Kovciiiber, , 1972.
197 P. Suppes. A survey of cognitirn r Decemb,r
198 8. Searle, P. Lorton, 3,., A. Goldtcrg, P. SAer,,e; N. Le lei , akit C jars,. Cotontrr-assictet instrun.Lon program: Tennessee Stitt

Febraary 14, 1973.
199 0. R. Levine, Computer-based-analytic grad n; ;inc. Cerny 4,0 ,, instrocronn. Mint, Mm,, 11,1)2.
200 P. Suppes, J. D. Fletcher, M. Zarnetlf, P. V.- e,113. A, Searle. Cvalgaton cf toenuter-i5sistd inistract on in elementary

mathematics for hearing-impaired stAei,ts , Varrt. 17, 1,373,
201 G. A. Huff. -Geometry and formal lingu,stics Ated 27, 1973.
202 C. Jensen, Useful teehrl flues for applying latent 1ml a inentaltc.,: ti troy. t,43., 9, 1'3% 3-
203 A. Goldberg. Computer-assisted instruction The aopticatiori of bout -pe..4/1(1.1 to adaotr.e r, spore analysi, May 25, 1973
204 R. C. Allinson, D. J. Herr-mitr', K. T. kVe ice'it Search j.7,,,,ES;',1 fr rcisogrotror rermary, June 8, 1973.
205 3. Van Camper). A computer -base: inlrorioction!:, the morphology Cft-110, Sae Si. June 18, 1973.
206 R. 8. Kimball. Selfoptim;zing tor-vrter-as,tist.-1 tutoring pta<14e .4/11( 25, 1973
207 R. C. Atkinson, J. 0. Fletcher, E. J. 1.1.:4';ay, 3. 0. Cattp.Sell, and A. Bart : Co,qutcr-a..:51stel inst.:tactic rt in initial reading. July 9, 1973.
208 V. R. thorn* and 3, D. Fletcher. E.iglisn as the-secor"IfanlJage of deal stonts. Jell 1973.
209 J. A. Paulson, An evalaation of in>truotional stra-zej ts a 'vole, Icaronig. souat,n, :.11) 30. 1973.
210 N. Martin. Convergence properVes of a Oast of vies t ala;:a.lie schemes sc.,..entta're,e4cu,ttoe Clans. July 314 1973.



Iticirtinueti Prow iiishie Kid. Oliver)

1.1 1 '1! `2`.ert. a)strottion in nrutlrainaling A curriculum descriptiun. July 31, 1973.
212 S. A. 'it e;o, i,erspetiiiig by computer. August 17. 1973.

kort:, P. SuDpes. Structtiral variables affint rig CAI performance on arithmetic word problors of disadvantaged
4, 1973,


